2025
Autores
Pintani, D; Caputo, A; Mendes, D; Giachetti, A;
Publicação
BEHAVIOUR & INFORMATION TECHNOLOGY
Abstract
We present CIDER, a novel framework for the collaborative editing of 3D augmented scenes. The framework allows multiple users to manipulate the virtual elements added to the real environment independently and without unexpected changes, comparing the different editing proposals and finalising a collaborative result. CIDER leverages the use of 'layers' encapsulating the state of the environment. Private layers can be edited independently by the different subjects, and a global one can be collaboratively updated with 'commit' operations. In this paper, we describe in detail the system architecture and the implementation as a prototype for the HoloLens 2 headsets, as well as the motivations behind the interaction design. The system has been validated with a user study on a realistic interior design task. The study not only evaluated the general usability but also compared two different approaches for the management of the atomic commit: forced (single-phase) and voting (requiring consensus), analyzing the effects of this choice on collaborative behaviour. According to the users' comments, we performed improvements to the interface and further tested their effectiveness.
2025
Autores
Oliveira, F; Carneiro, D; Pereira, J;
Publicação
Springer Proceedings in Business and Economics
Abstract
Explainable AI (xAI) emerged as one of the ways of addressing the interpretability issues of the so-called black-box models. Most of the xAI artifacts proposed so far were designed, as expected, for human users. In this work, we posit that such artifacts can also be used by computer systems. Specifically, we propose a set of metrics derived from LIME explanations, that can eventually be used to ascertain the quality of each output of an underlying image classification model. We validate these metrics against quantitative human feedback, and identify 4 potentially interesting metrics for this purpose. This research is particularly useful in concept drift scenarios, in which models are deployed into production and there is no new labelled data to continuously evaluate them, becoming impossible to know the current performance of the model. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Pedrosa, J; Pereira, SC; Silva, J; Mendonça, AM; Campilho, A;
Publicação
DEEP GENERATIVE MODELS, DGM4MICCAI 2024
Abstract
Chest radiography (CXR) is one of the most used medical imaging modalities. Nevertheless, the interpretation of CXR images is time-consuming and subject to variability. As such, automated systems for pathology detection have been proposed and promising results have been obtained, particularly using deep learning. However, these tools suffer from poor explainability, which represents a major hurdle for their adoption in clinical practice. One proposed explainability method in CXR is through contrastive examples, i.e. by showing an alternative version of the CXR except without the lesion being investigated. While image-level normal/healthy image synthesis has been explored in literature, normal patch synthesis via inpainting has received little attention. In this work, a method to synthesize contrastive examples in CXR based on local synthesis of normal CXR patches is proposed. Based on a contextual attention inpainting network (CAttNet), an anatomically-guided inpainting network (AnaCAttNet) is proposed that leverages anatomical information of the original CXR through segmentation to guide the inpainting for a more realistic reconstruction. A quantitative evaluation of the inpainting is performed, showing that AnaCAttNet outperforms CAttNet (FID of 0.0125 and 0.0132 respectively). Qualitative evaluation by three readers also showed that AnaCAttNet delivers superior reconstruction quality and anatomical realism. In conclusion, the proposed anatomical segmentation module for inpainting is shown to improve inpainting performance.
2025
Autores
Gómez, JB; Cruz, RPM; Cardoso, JS; Gutiérrez, PA; Martínez, CH;
Publicação
Neurocomputing
Abstract
2025
Autores
Barbero-Gómez, J; Cruz, RPM; Cardoso, JS; Gutiérrez, PA; Hervás-Martínez, C;
Publicação
NEUROCOMPUTING
Abstract
The use of Convolutional Neural Network (CNN) models for image classification tasks has gained significant popularity. However, the lack of interpretability in CNN models poses challenges for debugging and validation. To address this issue, various explanation methods have been developed to provide insights into CNN models. This paper focuses on the validity of these explanation methods for ordinal regression tasks, where the classes have a predefined order relationship. Different modifications are proposed for two explanation methods to exploit the ordinal relationships between classes: Grad-CAM based on Ordinal Binary Decomposition (GradOBDCAM) and Ordinal Information Bottleneck Analysis (OIBA). The performance of these modified methods is compared to existing popular alternatives. Experimental results demonstrate that GradOBD-CAM outperforms other methods in terms of interpretability for three out of four datasets, while OIBA achieves superior performance compared to IBA.
2025
Autores
Rodrigues, M; Antunes, JA; Migueis, V;
Publicação
WASTE MANAGEMENT
Abstract
Municipal solid waste (MSW) management has become a critical issue today, posing substantial economic, environmental, and social challenges. Identifying and analyzing dominant themes in this field is essential for advancing research and policies towards sustainable MSW management practices. This study aims to explore the key issues related to MSW management that have been addressed by both the scientific community and policymakers through funded projects. By doing so, the study seeks to guide the scientific community as a knowledge producer and the EU as a key funder. Two Latent Dirichlet Allocation (LDA) models were applied to analyze the themes from two corpora: one representing scientific literature and another focusing on EU-funded projects. Additionally, this analysis was complemented by a quantitative estimation of the similarity between the two corpora, providing a measure of alignment between the scientific community and policymakers. The results generally indicate that the two spheres are aligned and highlight the diversity of topics explored by the scientific community. Nevertheless, it is concluded that there are opportunities for further research on specific topics, such as leaching and the extraction of heavy metals. Additionally, the popularity of topics identified in European Union-funded projects has fluctuated considerably over time, focusing primarily on waste management rather than its prevention. In light of these findings, waste prevention emerges as a promising avenue for future EU-funded research initiatives.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.