Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Evolution of an Adaptive Serious Games Framework Using the Design Science Research Methodology

Autores
Pistono, A; Santos, A; Baptista, R;

Publicação
World Journal of Information Systems

Abstract
Games with purposes beyond entertainment, the so-called serious games, have been useful tools in professional training, especially in engaging participants. However, their evaluation and, also, their adaptable characteristics to different scenarios, audiences and contexts remain challenges. This paper examines the application of serious games in professional training, their results and adaptable ways to achieve certain goals. Using the Design Science Research (DSR) methodology, a framework was built to develop and evaluate serious games to improve user experience, learning outcomes, knowledge transfer to work situations, and the application of the skills practised in the game in real professional settings. At this stage, the investigation presents a framework regarding the triangulation of data collected from a systematic literature review, focus groups and interviews. Following the DSR methodology, the next steps of this investigation, listed at the end of the paper, are the demonstration of the framework in serious game development and the evaluation and validation of this artefact.

2025

Addressing the Agony of Recruitment for Human-centric Computing Studies

Autores
Madampe, K; Grundy, J; Good, J; Hidellaarachchi, D; Cunha, J; Brown, C; Kuang, P; Tamime, RA; Anik, AI; Sarkar, A; Zhou, W; Khalid, S; Turchi, T; Wickramathilaka, S; Jiang, Y;

Publicação
ACM SIGSOFT Softw. Eng. Notes

Abstract

2025

An LMS with personalized content selection for professional training

Autores
Aplugi, G; Santos, A;

Publicação
World Journal of Information Systems

Abstract
A Learning management system (LMS) is considered appropriate for company training. It is increasingly used in companies or organizations as a tool to manage their online training. The company or organization should consider the implementation of an LMS that provides ease in training content selection to achieve the best use and satisfaction of its employees in the learning process. From this perspective, the present study aims to investigate the implementation of a personalized LMS to facilitate the formative content selection tailored to employees’ roles. A Survey research methodology was used to achieve this objective. Based on the literature and survey results, we propose an approach to reach the personalization of content selection.

2025

Can Llama 3 Accurately Assess Readability? A Comparative Study Using Lead Sections from Wikipedia

Autores
Rodrigues, JF; Cardoso, HL; Lopes, CT;

Publicação
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II

Abstract
Text readability is vital for effective communication and learning, especially for those with lower information literacy. This research aims to assess Llama 3's ability to grade readability and compare its alignment with established metrics. For that purpose, we create a new dataset of article lead sections from English and Simple English Wikipedia, covering nine categories. The model is prompted to rate the readability of the texts on a grade-level scale, and an in-depth analysis of the results is conducted. While Llama 3 correlates strongly with most metrics, it may underestimate text grade levels.

2025

Beyond the Hands: Evaluating the Usability of Hands-Free Methods and Controllers for Menu Selection During an Immersive VR Experience

Autores
Monteiro, P; Peixoto, B; Gonçalves, G; Coelho, H; Barbosa, L; Melo, M; Bessa, M;

Publicação
INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION

Abstract
Handheld controllers are standard in immersive virtual reality (iVR), but the rise of natural hand-based interactions exposes the limitations of hand gestures, especially for point-and-click tasks with graphical user interfaces (GUI). This shows the need to explore alternative hands-free selection methods. Unlike most studies focusing on the selection task itself, this work evaluates the impact of such methods on multiple dimensions when selections occur alongside another primary task. The tested methods were: head gaze + dwell, leaning, and voice; eye gaze + dwell, leaning, blinking, and voice; and voice-only. Controllers served as the baseline. Methods were further analyzed by pointing and confirming mechanisms. Four dimensions were analyzed: (1) iVR experience, (2) user satisfaction, (3) usability, and (4) efficiency and effectiveness. With 72 participants, results show hands-free methods provide comparable experiences to controllers, suggesting selection methods have a lower impact on the user experience when users focus on a primary task.

2025

KEIGO: Co-designing Log-Structured Merge Key-Value Stores with a Non-Volatile, Concurrency-aware Storage Hierarchy

Autores
Adao, R; Wu, ZJ; Zhou, CJ; Balmau, O; Paulo, J; Macedo, R;

Publicação
PROCEEDINGS OF THE VLDB ENDOWMENT

Abstract
We present Keigo, a concurrency-and workload-aware storage middleware that enhances the performance of log-structured merge key-value stores (LSM KVS) when they are deployed on a hierarchy of storage devices. The key observation behind Keigo is that there is no one-size-fits-all placement of data across the storage hierarchy that optimizes for all workloads. Hence, to leverage the benefits of combining different storage devices, Keigo places files across different devices based on their parallelism, I/O bandwidth, and capacity. We introduce three techniques-concurrency-aware data placement, persistent read-only caching, and context-based I/O differentiation. Keigo is portable across different LSMs, is adaptable to dynamic workloads, and does not require extensive profiling. Our system enables established production KVS such as RocksDB, LevelDB, and Speedb to benefit from heterogeneous storage setups. We evaluate Keigo using synthetic and realistic workloads, showing that it improves the throughput of production-grade LSMs up to 4x for write-and 18x for read-heavy workloads when compared to general-purpose storage systems and specialized LSM KVS.

  • 53
  • 4292